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...Nothing but good news
There is a frog in South America 
Whose venom is a cure 
For all the suffering that mankind 
Must endure 
More powerful than morphine 
And soothing as the rain 
A frog in South America 
Has the antidote for pain...
— (Paul Simon, “Senorita with a Necklace 
of Tears”)

The opioid epidemic
Paul Simon’s comparison of epibatidine 
— the compound secreted by those frogs 
— with morphine has contemporary rele-
vance. The opioid epidemic continues to 
ravage, causing approximately one hun-
dred deaths per day in the United States 
(1). A majority of these opioid overdose 
deaths come from misused pharmaceu-
tical opioids (2). Unfortunately, 30% of 
Americans suffer from some form of pain; 

for thousands of years, chronic pain has 
been relieved by opioids. Society contin-
ues to struggle to balance several compet-
ing issues. (a) Ethical: Some companies 
encouraged opioid use, a transgression 
that led to over-prescription. (b) Biolog-
ical: Opioid use disorder has neurobio-
logical effects ranging from cell biology 
to behavior. (c) Clinical: Successfully 
tapering a patient off opioids remains an 
unsolved problem arising from variations 
in individual pharmacokinetics and a lack 
of objective biomarkers for chronic pain. 
(d) Social: The chemical ease of synthe-
sizing heroin and fentanyl derivatives has 
enabled people to obtain these opioids to 
maintain addiction — an issue with inputs 
from international relations, law enforce-
ment, and education.

A suitable agonist within the theme of 
G protein–coupled opioid receptors that 
also allows for reduced dependence rep-
resents a long-sought goal (3, 4). One pop-

ular strategy is to develop a biased agonist. 
Simply stated, a biased opioid receptor 
agonist activates the appropriate G protein 
but fails to recruit β-arrestin, thus reducing 
tolerance and dependence. Unfortunately, 
efforts in revealing such an agonist have 
not yet led to success in the clinic.

The analgesic target for 
epibatidine has posed 
challenges
For several decades, scientists have known 
that epibatidine acts on most nicotinic ace-
tylcholine receptors (nAChRs), which com-
prise another signaling pathway for pain 
relief as well as drugs of abuse (5–7). There 
are three challenges that limit clinicians 
from optimally modulating the analgesic 
properties of nAChRs: (a) Identifying which 
nAChR constitutes the major analgesic tar-
get. (b) Developing a nicotinic agonist that 
activates α4β2-containing nAChRs without 
leading to the varied and complex depen-
dence pathways downstream from nico-
tine. (c) Utilizing heterologous expression 
systems suitable for addressing point (b) 
with modern drug screening methods.

Seventeen different mammalian sub-
units (α1–α10, β1–β4, γ, ε, and δ) assem-
ble to form pentameric ligand-gated ion 
channels that establish an unknown but 
large number of nAChR subtypes (8). 
Although many of these receptors are 
readily expressed in various recombinant 
expression systems, some require addi-
tional proteins to help assembly and traf-
ficking to the plasma membrane. An early- 
researched example is the α7 nAChR, 
which generally requires coexpression of 
chaperone proteins, like Ric3 or NACHO, 
to conduct meaningful experiments (9, 
10). Some small-molecule α4β2 ligands, 
such as nicotine, also enhance nAChR 
surface expression; these ligands act as 
pharmacological chaperones, binding to 
nascent receptors in the cytoplasm, and 
aiding in assembly and trafficking (11, 12).

Because the pharmacology of α6β2- 
containing and α6β4 nAChRs strongly 
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one such subtype, the α6β2β3 nAChR (25). 
One therefore hopes that both Parkinson’s 
disease and nicotine dependence may also 
soon benefit from the ability to screen a 
full collection of nAChRs (17).

As a caution, we do not yet know of a 
nicotinic agonist that affects α6-contain-
ing AChRs more potently than α4-con-
taining nAChRs. ABT-894, one of the syn-
thetic ligands tested by Knowland et al., 
has the opposite selectivity, with higher 
agonist activity at α4-containing nAChRs 
(17). We can hope that enhanced α6β4  
levels at the plasma membrane will enable 
experiments to find an α6β4-selective 
ligand, thus providing a compound to test 
the hypothesis that such drugs will become 
nonaddictive opioids. We must remember 
that all the indications noted here — antial-
lodynia, nicotine dependence, and Parkin-
son’s disease — require chronic administra-
tion of drugs, which may present additional 
problems. Overcoming such intellectual and 
technical barriers would constitute Paul 
Simon’s “Nothing but good news,” indeed.
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