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BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via
an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would
disturb integrated human responses to hypoxia.

METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic
pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed
to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron.
Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography.

RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ
by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2
mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P
= 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants
than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for […]
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Introduction
Cellular and integrated physiological responses to variations in 
oxygen availability are regulated in metazoan organisms by tran-
scription factors known as hypoxia-inducible factors (HIFs) (1, 2). 

HIF is active as a transcription factor when in a heterodimeric form 
consisting of 1 HIF-α and 1 HIF-β subunit (3). These heterodimers 
bind to hypoxia-response elements (HREs) in the genome and 
control the expression of many hundreds of genes, including those 
central to the regulation of erythropoiesis (4), angiogenesis (5), and 
metabolism (6). The consequences of targeted genetic disruption 
of the HIF pathway in animal models demonstrate the importance 
of HIF in regulating these processes, and also indicate that HIF is 
a key regulator of pulmonary vascular and respiratory physiology 
(7–13). Spontaneously occurring mutations in humans confirm this 
to be the case, with genetic upregulation of the pathway resulting 
in polycythemia, pulmonary arterial hypertension, abnormal ven-
tilatory drive, and impaired skeletal muscle oxidative phosphory-
lation (14–18). Additionally, in some human populations resident 
for thousands of years at high altitude, there is evidence for natural 
selection of HIF pathway gene variants associated with downregu-
lation of hypoxia sensing (19–21).

BACKGROUND. Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an 
action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb 
integrated human responses to hypoxia.

METHODS. We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary 
hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour 
periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic 
pressure (PASP) was serially assessed with Doppler echocardiography.

RESULTS. Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by 
group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg 
greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7–9.7 mmHg, P = 0.001). 
Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls 
(absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, –8.3 to –0.3 mmHg, P = 0.035). Serum 
erythropoietin responses to hypoxia also differed between groups.

CONCLUSION. Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary 
hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a 
mechanism through which iron deficiency may be detrimental to human health.
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Results
Baseline characteristics of iron-deficient and iron-replete groups. 
Thirteen age- and sex-matched pairs of iron-deficient (ID) and 
iron-replete (IR) healthy individuals were identified as illustrated 
in Figure 1. Characteristics of these participants are given in Table 
1. There were no significant differences in BMI or spirometric 
parameters between groups. Mean ferritin in the ID group was 6.4 
μg/l and transferrin saturation 8.4%, indicating profound abso-
lute iron deficiency. Corresponding values for the IR group were 
66.9 μg/l and 29.2%, respectively, consistent with physiologically 
normal iron stores. Plasma soluble transferrin receptor (sTfR) was 
significantly higher in the ID group; the mean exceeded the upper 
limit of normal of 28.1 nmol/l for the healthy population (49), 
implying a significant unmet tissue iron demand. None of the IR 
group had an elevated sTfR. Hepcidin, a peptide hormone central 
to iron homeostasis, was very heavily suppressed in the ID group 
compared with their IR counterparts.

Hypoxic pulmonary hypertension. Figure 2 illustrates hypoxic 
PASP responses for both groups. PASP prior to each hypoxic expo-
sure did not differ across group or study day (ID vs. IR: mean 27.3 
vs. 26.3 mmHg, on first day; 27.2 vs. 26.6 mmHg, on second day;  
P = 0.59 for group; P = 0.79 for study day; P = 0.75 for interaction). 
After 6 hours of hypoxia on the first day, the ID group reached a 
mean PASP of 44.2 mmHg compared with 37.0 mmHg in the IR 
group. Hypoxia-induced pulmonary hypertension was therefore 
6.2 mmHg greater in the ID group (95% CI, 2.7–9.7 mmHg, P = 
0.001) (Figure 2A). On the second day, following i.v. iron, the 
PASP increase diminished in both groups (Figure 2B). At 6 hours, 
the mean in the ID group was 33.1 mmHg and in the IR group 
30.5 mmHg, representing absolute reductions in the rise during 
hypoxia of 11.1 and 6.8 mmHg, respectively (Figure 2C). The mag-
nitude of the absolute reduction seen in the ID group was signifi-
cantly greater than that in the IR group (–4.3 mmHg, 95% CI, –8.3 
to –0.3 mmHg, P = 0.035). After 30 minutes of euoxia following 
cessation of hypoxia on the first day, euoxic PASP was elevated in 
both groups compared with values prior to hypoxia (mean increase 
in euoxic PASP: ID, 5.4 mmHg; IR, 4.2 mmHg; P < 0.001 for both 
groups), reflecting acclimatization of the pulmonary vasculature 
(Figure 2A). On the second day, with i.v. iron, an increase in euoxic 
PASP 30 minutes after hypoxia was no longer evident (Figure 2B). 
The difference between study days was significant (reduction in 
euoxic PASP at 30 minutes after hypoxia compared with first day: 
ID, –4.5 mmHg; IR, –3.6 mmHg; P < 0.001 for both groups).

Hypoxic ventilatory responses and peripheral oxyhemoglobin sat-
uration. The starting end-tidal partial pressure of carbon dioxide 
(PETCO2) did not differ between the ID and IR groups on either 
study day, nor on the different days within groups (35.9 vs. 35.4 
mmHg, respectively, on the first day; 35.5 vs. 34.9 mmHg, respec-
tively, on the second day; P = 0.45 for group; P = 0.052 for study 
day; P = 0.77 for interaction). Figure 3 shows the end-tidal and 
inspired partial pressures of gases, as well as the peripheral oxy-
hemoglobin saturation (SpO2), in both groups for each study day. 
The mean end-tidal partial pressure of oxygen (PETO2) during the 
hypoxic exposures did not vary between groups or study days  
(P = 0.96 for group; P = 0.22 for study day; P = 0.74 for interaction), 
confirming that uniform hypoxic stimuli were delivered. Similarly, 
the mean SpO2 during the hypoxic exposures did not vary between 

The basis for the oxygen-sensitivity of the pathway is that the 
HIF-α subunit can undergo hydroxylation at 3 amino acid resi-
dues by a group of enzymes called HIF hydroxylases (22). HIF-α 
may be hydroxylated at 2 specific proline residues by prolyl-hy-
droxylase domain enzymes (PHDs). Hydroxylation at either site 
marks HIF-α for polyubiquitination and proteasomal degrada-
tion (23–25). Hydroxylation at a single asparagine residue, by an 
enzyme known as factor inhibiting HIF (FIH), does not promote 
HIF-α degradation but instead blocks recruitment of coactivators 
of transcription to the HIF-HRE complex (26–28). These hydroxy-
lation reactions absolutely require dioxygen, such that as oxygen 
tension falls, the rate of HIF-α hydroxylation is slowed. HIF-α thus 
accumulates, leading to greater abundance of HIF heterodimers, 
which are able to recruit transcriptional coactivators and control 
HRE-regulated genes. The HIF-β subunit, in contrast, is constitu-
tively expressed and is not oxygen-regulated.

The PHDs and FIH are members of a superfamily of 2-oxog-
lutarate–dependent dioxygenases, which includes members with 
diverse biological roles, from collagen synthesis to histone demeth-
ylation (29). These enzymes all share the requirement for a single 
ion of ferrous iron at their active sites, which is involved in electron 
transfer (30), giving rise to the possibility that HIF hydroxylase 
activity might be sensitive to intracellular iron availability (31, 32). 
Indeed, prior to the characterization of the HIF hydroxylases, both 
sensitivity to iron chelation with desferrioxamine (DFO) and sen-
sitivity to Fe2+ substitution with Ni2+ or Co2+ ions were used as indi-
cators of whether a pathway may be regulated by HIF (31, 33). Cell 
culture experiments have subsequently confirmed an effect of iron 
availability on HIF via altered HIF hydroxylase function (34–37).

An unusual aspect of human iron homeostasis is that there 
is no regulated mechanism for the excretion of excess iron (38). 
An apparently paradoxical consequence is that iron deficiency is 
extremely common (39), since iron uptake must be tightly regu-
lated to prevent excess iron accumulation. Additionally, a state 
of iron sequestration may exist as a result of inflammation in 
the setting of chronic disease, even in individuals with adequate 
total body iron stores (40, 41). It is at present unknown, however, 
whether these clinical variations in iron status have an effect on 
HIF hydroxylase activity that translates into significant conse-
quences for the pathobiology of human oxygen sensing. This 
question is of very considerable importance for human health and 
disease because conditions in which hypoxia plays a key role are 
very common global causes of morbidity and mortality (2, 42), 
and iron deficiency affects more individuals worldwide than any 
other medical condition (43).

In the present study, we set out to determine whether there 
exists a direct effect of clinical iron deficiency in modulating 
responses to hypoxia in humans. We focused on the pulmonary 
circulation as a model system for investigating the interaction 
between iron and oxygen sensing and signaling, because acute 
manipulation of iron bioavailability has been shown markedly 
to affect the hypoxic behavior of the pulmonary vasculature (44, 
45). In contrast to the systemic circulation, the response of the 
pulmonary vasculature to hypoxia is to vasoconstrict (46), and the 
magnitude of this response during global alveolar hypoxia can be 
determined from the consequent rise in pulmonary artery systolic 
pressure (PASP) (47, 48).
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Cardiac output responses to hypoxia. Starting euoxic cardiac 
output (CO) did not differ between the ID and IR groups on either 
study day, nor on the different days within groups (mean 5.6 vs. 
5.3 l/min, respectively, on first study day; 5.6 vs. 5.1 l/min, respec-
tively, on second study day; P = 0.45 for group; P = 0.48 for study 
day; P = 0.57 for interaction). CO increased during hypoxia in 
both groups on both days (first study day 1.1 and 0.8 l/min, respec-
tively; second study day 0.8 and 1.0 l/min, respectively; P < 0.001 

groups or study days (P = 0.78 for group; P = 0.33 for study day; 
P = 0.83 for interaction). The inspired partial pressure of carbon 
dioxide (PICO2) — an index of ventilation when PETCO2 is clamped 
to maintain eucapnic conditions — did not differ between groups 
or study days at 30 minutes (approximating to the acute hypoxic 
ventilatory response) (P = 0.94 for group; P = 0.61 for study day;  
P = 0.50 for interaction) or at 6 hours (P = 0.67 for group; P = 0.08 
for study day; P = 0.51 for interaction).

Figure 1. Study recruitment flow diagram. During the period of recruitment there were 25 expressions of interest from deferred blood donors and 126 
responses to advertisements for healthy volunteers. In total, 16 participants were enrolled to the IR group and 15 to the ID group. Two female participants 
in the ID group were withdrawn during the first hypoxic exposure. The first developed headache and nausea consistent with altitude sickness. The second 
experienced vasovagal syncope. Both recovered promptly without sequelae on return to air. One participant in the IR group had echocardiographic data 
during hypoxia that precluded accurate measurement of PASP, despite a successful screening visit. No suitable ID participants presented themselves as 
matches for 2 young males recruited to the IR group early in the course of the study; data for these individuals were not analyzed. Thus, 13 ID individuals 
completed the study and were matched with an equal number of IR controls in the per-protocol analysis; there were no missing data.
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Plasma hepcidin was lower before the hypoxic exposure in the 
ID than in the IR group at the start of both study days (ID vs. IR: 
mean 4.5 vs. 20.1 μg/l, on first day; 3.2 vs. 18.9 μg/l, on second day; 
P = 0.005 for group; P = 0.63 for study day; P = 0.97 for interac-
tion). Exposure to hypoxia significantly increased plasma hepcidin 
on the first study day; however, the effect was attenuated in the ID 
group. On the second day, the magnitude of the rise in plasma hep-
cidin during hypoxia was significantly increased following i.v. iron, 
but the size of this effect was similarly attenuated in the ID group.

Serum IL-6 prior to each hypoxic exposure did not differ 
by group or study day (ID vs. IR: mean 0.6 vs. 1.1 ng/l, on first 
day; 0.7 vs. 0.9 ng/l, on second day; P = 0.21 for group; P = 0.81 
for study day; P = 0.53 for interaction). Serum IL-6 significantly 
increased during exposure to hypoxia on the first study day, but 
there was no difference in the rise between groups. Findings on 
the second day were similar.

Discussion
In recent years, considerable evidence has emerged of the harm 
associated with iron deficiency in cardiopulmonary diseases and 
of a benefit from administering i.v. iron in these conditions. Iron 
deficiency appears to be particularly important in pulmonary vas-
cular disease (50–53) but has also been linked to poorer outcomes 
in chronic heart failure (54–56), acute heart failure (57), and 
chronic obstructive pulmonary disease (58). Historically, ane-
mia has been considered to be the most significant consequence 
of iron deficiency (38). Although iron-deficient, the patients in 
these recent studies were not necessarily anemic; iron deficiency 
was an independent risk factor for poor outcome. Equally, though 
hemoglobin did not invariably rise with the provision of iron, it 
was clear that treatment had significant clinical benefits (55, 56, 
59). These studies are remarkable for the absence of any clear 
mechanistic explanation for the profound effects of iron defi-
ciency and supplementation.

The hypothesis of the present study was that iron deficiency 
would act significantly to alter human responses to hypoxia. This 
hypothesis was founded not simply on an understanding of the 
molecular biology of the HIF pathway, but on the observed effects 
of iron chelation in cell culture and intact humans. First, iron 
chelation with DFO was shown to induce HIF activity and erythro-
poietin mRNA expression in vitro with a time course very similar 
to that of hypoxia (60). Subsequently, infusion of DFO was found 
to elevate PASP (47) and circulating erythropoietin levels (61) in 
healthy humans breathing air, and also to augment the PASP rise 
seen in response to a brief hypoxic challenge (45). Conversely, 
acute i.v. iron loading attenuated both the rise in PASP during pro-
longed hypoxia (62) and the augmented hypoxic pulmonary vaso-
constriction usually seen afterward (45). Lacking, however, has 
been any demonstration of the effects of clinical iron deficiency 
on hypoxia-sensing and signaling mechanisms.

A major difficulty in extrapolating the findings of work using 
iron chelation is that acute infusion of DFO is very different indeed 
from the insidious development of iron deficiency seen in clinical 
practice. DFO permeates cell membranes slowly, preferentially 
depletes hepatic and reticuloendothelial iron, and cannot effectively 
chelate iron bound to circulating transferrin (63); thus the pattern of 
tissue iron depletion from an acute infusion of DFO is likely to differ 

for each group, each day). In contrast to PASP, the CO response 
to hypoxia did not differ between groups or study days, and there 
was no differential effect of i.v. iron between groups (P = 0.29 for 
group; P = 0.91 for study day; P = 0.25 for interaction).

Iron and oxygen-sensing and signaling pathways. Table 2 gives 
measurements of serum erythropoietin, plasma hepcidin, and 
serum IL-6 made in each group at the start of both study days 
(immediately prior to each infusion), and at the conclusion of each 
6-hour hypoxic exposure. In all 3 cases, there were no significant 
within-group differences in mean starting values between the first 
and second study days.

Serum erythropoietin was higher before the hypoxic exposure 
in the ID than in the IR group at the start of both study days (ID vs. 
IR: mean 25.4 vs. 7.5 mIU/ml, on first day; 20.1 vs. 6.8 mIU/ml, on 
second day; P = 0.018 for group; P = 0.08 for study day; P = 0.16 
for interaction). In the ID group, euoxic serum erythropoietin on 
the first study day correlated strongly with both serum ferritin 
and hemoglobin concentration (Spearman’s ρ = –0.69, P = 0.009 
for both relationships); these latter 2 variables also correlated 
with one another (ρ = 0.65, P = 0.02). In contrast, euoxic serum 
erythropoietin in the IR group on the first study day showed no 
correlation with either serum ferritin (ρ = 0.02, P = 0.92) or hemo-
globin concentration (ρ = –0.165, P = 0.58), though these latter 2 
variables did correlate with one another (ρ = 0.64, P = 0.02), as in 
the ID group. Exposure to hypoxia significantly increased serum 
erythropoietin on the first study day irrespective of iron status; 
however, the effect was greater in the ID group. Findings on the 
second day were similar.

Table 1. Baseline participant characteristics

Characteristic ID group  
(n = 13)

IR group  
(n = 13)

P value

Female sex, no. (%) 9 (69) 9 (69)
Age, years 37.5 ± 11.5 36.7 ± 13.2 0.86
BMI,A kg/m2 24.2 ± 3.7 23.5 ± 3.2 0.65
Smoking status, current/ex/never 1:3:9 0:4:9 0.56B

Resting peripheral oxyhemoglobin 
saturation, %

97.8 ± 1.0 97.7 ± 1.0 0.70

Systolic blood pressure, mmHg 126 ± 16 122 ± 16 0.59
Diastolic blood pressure, mmHg 80 ± 12 76 ± 11 0.38
Forced expiratory volume in 1 
second, % predicted

105 ± 11 106 ± 15 0.90

Serum ferritin, μg/l 6.4 ± 3.9 66.9 ± 52.1
Serum transferrin saturation, % 8.4 ± 3.6 29.2 ± 5.7
Serum iron, μmol/l 6.9 ± 3.0 18.7 ± 4.6 <0.001
Serum transferrin, g/l 3.8 ± 0.6 2.9 ± 0.5 <0.001
Plasma soluble transferrin 
receptor, nmol/l

29.3 ± 8.3 19.5 ± 4.2 <0.001

Plasma hepcidin, μg/l median 
(interquartile range)

1.8 (0.8–5.0) 22.1 (18.5–29.1) <0.001C

Hemoglobin concentration, g/l 
median (interquartile range)

120 (111–131) 139 (135–154) 0.001C

Plus-minus values are means ± SD, and statistical comparisons are by 
Student’s t test, unless otherwise stated. AThe BMI is the weight in 
kilograms divided by the square of the height in meters. Bχ-squared test; 
CMann-Whitney U test.

https://www.jci.org
https://www.jci.org
https://www.jci.org/126/6


The Journal of Clinical Investigation      C l i n i c a l  M e d i c i n e

2 1 4 3jci.org      Volume 126      Number 6      June 2016

tude residents with pulmonary hypertension secondary to chronic 
hypobaric hypoxia quickly brings about a fall in PASP and pulmo-
nary vascular resistance (68, 69). Thirdly, in patients with severe 
chronic hypoxemic lung disease, gradual reduction of [Hb] by 
repeated small-volume venesection results in a significant fall in 
mean pulmonary artery pressure and pulmonary vascular resis-
tance (70). Taking these observations together, it is very difficult 
indeed to see how a lower [Hb] could account for the much greater 
hypoxic PASP rise seen in the ID group, since any influence appears 
to act in entirely the opposite direction. Indeed, some investigators 
argue that in examining the behavior of the pulmonary circulation 
during hypoxia, a correction should be applied for this attenuating 
effect on hypoxic pulmonary vasoconstriction of a lower [Hb] (71).

The causative nature of the relationship between the iron defi-
ciency itself and exaggerated hypoxic pulmonary vasoconstriction is 
further attested by the significantly greater attenuation, by i.v. iron, 
of hypoxic pulmonary hypertension in the ID group. Again, it should 
be considered whether the lower [Hb] contributes, by increasing in 
some way the action of iron on the pulmonary vasculature. Radio-
active isotope studies, however, indicate that when infused into pro-
foundly ID individuals, iron is directed rapidly toward erythropoiesis 
(72). Thus the expected effect is to constrain iron availability for the 
pulmonary vasculature in the ID group, not increase it.

considerably from that seen in naturally occurring iron deficiency. 
Moreover, DFO has actions aside from iron chelation; it participates 
in oxidation and reduction reactions, and has free-radical scaveng-
ing properties (64). ROS are implicated in many hypoxia-sensing 
and signaling pathways (65), so DFO may interfere directly with 
human responses to hypoxia independent of any effect on iron. The 
present study overcomes these problems and moves from short-
term experimental manipulation of iron bioavailability, to demon-
strating that the predicted effects of iron deficiency on responses to 
hypoxia are significant for human health.

We found striking exaggeration of hypoxic pulmonary hyper-
tension in healthy individuals with iron deficiency. After only 6 
hours of moderate alveolar hypoxia, the ID group showed a mean 
rise in PASP that was in excess of 50% greater than that seen in IR 
controls. The hemoglobin concentration ([Hb]) in the ID group 
was, as expected, somewhat lower than that in the IR group, and 
it must be considered whether this difference could have contrib-
uted to the findings. Experimental evidence from a range of set-
tings indicates that a lower [Hb] acts to attenuate hypoxic pulmo-
nary vasoconstriction, rather than to augment it. First, detailed 
animal experiments using perfused rabbit lungs (66) and intact 
dogs (67) indicate that a lower [Hb] impairs hypoxic pulmonary 
vasoconstriction. Second, isovolemic hemodilution of high-alti-

Figure 2. PASP responses to hypoxia. (A) First study day (saline infusion). 
(B) Second study day (iron infusion). (C) Difference in response between 
study days. Responses for the ID group are shown in red, and those for the 
IR group are shown in blue (data are means ± SEM; n = 13 in each group). 
Solid black bars indicate the 6-hour periods of eucapnic hypoxia. Contin-
uous lines represent responses during hypoxia. Broken lines indicate the 
change in air-breathing PASP induced by the 6-hour period of hypoxia, 
which reflects the degree of acclimatization of the pulmonary vasculature. 
On the first study day, the increase in PASP during hypoxia was significantly 
greater in the ID group. On the second study day, following iron infusion, 
the increase in PASP was significantly attenuated in both groups. Euoxic 
PASP was significantly elevated following exposure to 6 hours of hypoxia 
in both groups on the first study day, but this effect was abolished by prior 
administration of i.v. iron on the second day. Panel C illustrates that the 
effect on PASP of prior iron administration was minimal for the first 2 hours 
of hypoxia. Thereafter, iron administration attenuated hypoxic pulmonary 
hypertension to a greater extent in the ID group. Asterisks indicate signifi-
cance of comparisons between or within groups: *P < 0.05; **P < 0.01;  
***P < 0.001; NS, not significant (mixed-effects model).
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There is good reason to believe that the effects of iron defi-
ciency on PASP are mediated by HIF. A collection of animal (7–10) 
and human (16, 18, 19) studies have confirmed the centrality of 
the HIF pathway in coordinating pulmonary vascular responses to 
hypoxia. In healthy humans, the time course of the rise in PASP seen 
during alveolar hypoxia is biphasic; an acute rise is seen rapidly and 
becomes maximal within minutes (48, 73) — a response too brisk 
to be mediated by a transcription factor pathway such as HIF. Sub-
sequently, a second phase begins after approximately 40 minutes, 

continuing for several hours before plateauing (48, 74). During the 
second phase, PASP does not immediately fall back to baseline with 
euoxia, and a subsequent hypoxic stimulus will cause more marked 
hypoxic pulmonary vasoconstriction (45, 74). These are the hall-
marks of pulmonary vascular acclimatization to hypoxia (75).

That the second phase of hypoxic pulmonary vasoconstriction 
brings with it a transient change in the properties of the pulmo-
nary circulation suggests that hypoxia-regulated gene expression 
underlies the effect (76). In support of this conclusion, prolonged 

Figure 3. Peripheral oxyhemoglobin saturation and partial pressures of oxygen and carbon dioxide on each study day. Left, first study day (circles); 
right, second study day (squares). Top panel, peripheral oxyhemoglobin saturation (SpO2); middle panel, end-tidal partial pressure of oxygen (PETO2) and 
carbon dioxide (PETCO2); bottom panel, inspired partial pressure of oxygen (PIO2) and carbon dioxide (PICO2). Data for the ID group are shown in red and for 
the IR group in blue (n = 13 in each group); data are means ± SD based on time-averaged continuous recordings.
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hypoxia in humans leads to pulmonary vascular remodeling (77), 
but in rodents with heterozygous deficiency of either HIF-1α (9) or 
HIF-2α (10) this phenomenon is greatly attenuated. Additionally, 
air-breathing rats fed an iron-restricted diet rapidly develop pul-
monary arterial hypertension and right ventricular hypertrophy 
(78), in association with increased lung expression of HIF-1α and 
HIF-2α. Finally, the effect of i.v. iron to attenuate PASP elevation 
during hypoxia was evident in the present study during the sec-
ond phase of hypoxic pulmonary vasoconstriction but not the first 
(Figure 2C); this is consistent with iron acting on hypoxia-regu-
lated gene expression but not on those processes underlying acute 
hypoxic pulmonary vasoconstriction.

The hypoxic exposure on the first day induced a degree of 
acclimatization (Figure 2A). Experiments using similar sustained 
hypoxic exposures indicate that after return to euoxia for 3 hours, 
it is possible to demonstrate some residual PASP elevation and 
augmented hypoxic pulmonary vasoconstriction in response to a 
further acute hypoxic challenge (74). If a week of euoxia is allowed 
to pass, however, no elevation in euoxic PASP remains, and the 
magnitude of hypoxic pulmonary vasoconstriction returns com-
pletely to normal (45, 79). Thus, in the present study, an interval 
of a week or more was imposed between experimental days to 
ensure the hypoxic exposure on the first day would not affect find-
ings during the second. Acute i.v. iron loading does not alter the 
first phase of hypoxic pulmonary vasoconstriction (62), so within 
each group, the near-identical euoxic PASPs and very similar acute 
PASP responses to hypoxia, on the second experimental day com-
pared with the first, provide further evidence that 1 week was suf-
ficient for any acclimatization to resolve.

Following i.v. iron, both groups exhibited a peak in PASP after 
2 hours of hypoxia, after which PASP declined. In a previous study 
using a similar duration of hypoxia, this secondary decline was not 
observed (62). Instead, PASP was stable from 1 hour onward. In 
that study, the i.v. iron was administered as 200 mg iron sucrose 
over 105 minutes prior to hypoxia. This contrasts with the present 
study, in which up to 1000 mg ferric carboxymaltose was adminis-
tered over 15 minutes before the exposure. Iron sucrose is cleared 
from the circulation into the tissues more rapidly than ferric car-
boxymaltose (72, 80). Thus the likely explanation for the differ-
ence between our findings and those of the previous study is that 

the ferric carboxymaltose, even at the higher dose, had less time 
to downregulate the mechanisms underlying the second phase 
of hypoxic pulmonary vasoconstriction, before the hypoxia was 
introduced. Thus in our study the second phase of hypoxic pul-
monary vasoconstriction is evident in both groups on the second 
experimental day, before the effect of i.v. iron supervenes.

The technique used to determine PASP relies on the presence 
of a systolic tricuspid regurgitant jet. Advances in echocardiog-
raphy reveal that most healthy individuals have physiological tri-
cuspid regurgitation (TR), which is not considered a reflection of 
underlying pathology (81–83). Invasive measurements of pulmo-
nary artery pressure correlate very well in a wide range of clini-
cal settings with those obtained using echocardiography (84–88), 
and this holds true for healthy individuals rendered hypoxic (89). 
It is of interest whether healthy individuals without demonstra-
ble TR are biologically different in some way. The prevalence of 
detectable TR has risen markedly with technological advances 
in echocardiography, without any accompanying change in the 
mean measured PASP (83, 90). This implies that the absence of 
TR does not simply reflect lower pressures in the pulmonary circu-
lation. Furthermore, mortality is no different in individuals with 
and without TR sufficient to determine PASP (91), so if there are 
biological differences, their clinical significance is questionable. 
Associations between echocardiographic TR and characteristics 
of the left heart have been reported, including left atrial size, left 
ventricular end-diastolic diameter, and ejection fraction, though 
the size of the differences is small, and the direction of reported 
effects is not consistent (83, 90). Taking all this together, we can-
not completely discount the possibly that pulmonary vascular 
behavior during hypoxia might differ, in some small way, in the 
minority of healthy individuals who do not have TR sufficient to 
measure PASP echocardiographically.

In addition to the pulmonary vasculature, we investigated the 
serum erythropoietin response to hypoxia. Interstitial fibroblasts 
in the renal cortex are responsible for secreting erythropoietin to 
regulate red cell production (92) but cannot detect [Hb] directly, 
and instead rely on the HIF pathway to sense local oxygen tension 
(93). Increased renal perfusion results in increased renal oxygen 
consumption due to the work of tubular reabsorption; thus renal 
tissue oxygen tension is largely independent of renal perfusion, 

Table 2. Influence of iron status on erythropoietin, hepcidin, and IL-6 responses to hypoxia

ID group (n = 13) IR group (n = 13) P value for fixed effects
Start End Start End Hypoxia Iron status Interactions

Hypoxia & iron 
status

i.v. iron, hypoxia, & 
iron status

Erythropoietin (mIU/ml) Day 1 25.4 ± 7.0 37.4 ± 9.5 7.5 ± 0.6 13.7 ± 1.2 <0.001 0.018 0.048 0.47
Day 2 20.1 ± 4.4 36.4 ± 9.9 6.8 ± 0.8 14.6 ± 1.6

Hepcidin (μg/l) Day 1 4.5 ± 1.6 6.0 ± 2.8 20.1 ± 4.8 36.5 ± 8.8 0.015 0.005 0.039 <0.001
Day 2 3.2 ± 1.2 9.5 ± 4.6 18.9 ± 4.3 78.1 ± 10.5

IL-6 (ng/l) Day 1 0.6 ± 0.2 2.0 ± 0.4 1.1 ± 0.3 2.6 ± 0.7 0.001 0.21 0.76 0.58
Day 2 0.7 ± 0.1 2.1 ± 0.4 0.9 ± 0.2 2.0 ± 0.5

In none was there a significant difference in within-group mean starting values between the first and second study days. Saline was infused on day 1 and 
i.v. iron given on day 2. Data are means ± SEM.
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Hepcidin expression is suppressed indirectly by hypoxia via 
stimulation of erythropoiesis (103). This mechanism does not 
depend on a fall in serum iron from increased erythrocyte uptake 
(104) but depends instead on a putative factor named erythrofer-
rone produced by the bone marrow (105). Interestingly, we found 
that hepcidin rose in both groups on both study days during each 
6-hour hypoxic exposure. Over longer periods hypoxia clearly sup-
presses hepcidin (95), but an early transient rise in hepcidin during 
hypoxia was also suggested in a previous study (104). Given that 
IL-6 rose slightly during hypoxia, to a similar extent in both groups 
on both days, it may be that acute hypoxia generates an inflamma-
tory signal that drives hepcidin expression over hours, before the 
suppressive effect of erythropoietic drive and erythroferrone pro-
duction supervenes. If so, this has implications for diseases char-
acterized by intermittent as opposed to chronic hypoxia. Interest-
ingly, iron sequestration driven by elevated hepcidin has recently 
been reported in obstructive sleep apnea (106, 107), one example 
of such a condition.

The magnitude of the rise in hepcidin was much more substan-
tial in the IR group, presumably because of a potent suppressive 
effect of low serum iron on hepcidin secretion in the ID partici-
pants. When i.v. iron was given, hepcidin levels rose more mark-
edly, as expected, in response to hyperferremia. The rise was again 
constrained in the ID group, suggesting that existing tissue iron 
depletion still acts as a strong negative regulatory signal even when 
serum iron levels are acutely elevated. With this in mind, it is inter-
esting to note that in Ethiopian highlanders with elevated [Hb], 
hepcidin is not heavily suppressed despite exposure to chronic 
steady-state hypoxia; iron demand and body iron stores instead 
appear to be the primary regulators of circulating hepcidin in this 
setting (108). Equally, venesection of Peruvian high-altitude resi-
dents suffering from chronic mountain sickness — a condition in 
which polycythemia, hypoxemia, and pulmonary hypertension are 
features (109) — brings about a very rapid fall in circulating hep-
cidin levels, consistent with an erythroid regulator signaling the 
tension between erythropoietic drive and iron supply (110).

Studies of high-altitude populations also demonstrate that 
polycythemia is not an inevitable consequence of chronic expo-
sure to hypobaric hypoxia. For example, Tibetans resident at 
4000 m show a similar [Hb] to those of US sea-level residents 
(111). This group is also remarkable for exhibiting relatively nor-
mal pulmonary artery pressures at altitude, and very modest 
hypoxic pulmonary vasoconstriction in response to a further fall 
in ambient oxygen tension (112), despite showing very marked 
ventilatory responses to hypoxia (113). As already discussed, it 
may be that some of this protection against high-altitude hypoxic 
pulmonary hypertension is explained by the lower [Hb] itself, and 
conversely that much of the pulmonary hypertension seen in indi-
viduals in whom chronic mountain sickness develops is driven by 
polycythemia (109). Putting aside these complexities, it is nota-
ble that different high-altitude populations display very different 
combinations of traits, which include metabolic, cerebrovascular, 
and reproductive characteristics in addition to the pulmonary vas-
cular, ventilatory, and hematological features already discussed 
(114). Evidence increasingly implicates differences in genes 
encoding proteins involved in oxygen and iron homeostasis, par-
ticularly those of the HIF pathway (19–21, 115–117).

and instead is mainly determined by blood oxygen content (94). 
This in turn is primarily a reflection of [Hb]. In this way, the kid-
ney uses an oxygen-sensing pathway to sense [Hb]. As a conse-
quence, a fall in blood oxygen content due to hypoxemia without 
any change in [Hb], as occurs acutely at high altitude (95), acts to 
stimulate erythropoietin production.

In the present study, both euoxic serum erythropoietin and 
the absolute rise in levels seen during sustained hypoxia were 
greater in the ID group, though the relative rises were not dissimi-
lar. The marginally lower mean [Hb] in the ID group, coupled with 
multiple collinearity of serum ferritin, [Hb], and erythropoietin, 
precludes definite conclusions about causation. The differences 
observed are, though, certainly compatible with a direct effect of 
iron deficiency, and fit well with the observation that erythropoie-
tin levels are considerably higher for a given [Hb] in the setting of 
iron deficiency anemia than anemias of other etiologies (96, 97). 
A direct action on erythropoietin secretion would also provide an 
explanation for observations from animal studies that, while poly-
cythemia induced by transfusion attenuates hypoxic erythropoi-
etin production, polycythemia induced by previous exposure to 
hypoxia — which will tend to cause iron deficiency because of the 
iron demand for erythropoiesis (95) — has the opposite effect (98).

In humans, HIF-2α is the predominant paralog controlling 
erythropoietin expression (93). The regulation of HIF-2α mRNA 
activity differs from that of HIF-1α mRNA; the former contains an 
iron-responsive element (IRE) whereas the latter does not. This 
IRE represses the translation of HIF-2α under conditions where 
iron is scarce; its importance is illustrated by mice deficient in iron 
regulatory protein 1, which develop polycythemia that is paradox-
ically stimulated by iron deficiency (8). These animals also exhibit 
spontaneous pulmonary hypertension. From the perspective of 
serum erythropoietin responses to hypoxia, there exists a tension 
between the effects of iron deficiency on HIF hydroxylase activity 
and those on HIF-2α mRNA translation, which may go some way 
to explaining the absence of a marked effect of acute iron loading 
on erythropoietin behavior in the present study.

Hepcidin is recognized as the major hormone regulating iron 
homeostasis. It acts to lower serum iron levels by promoting the 
degradation of ferroportin, the only mammalian cellular iron export 
protein so far identified (99). A rise in serum iron is signaled via a 
mechanism involving transferrin receptors on the surface of hepa-
tocytes (100). Hepcidin secreted in response impairs the ability of 
cells of the reticuloendothelial system and duodenal enterocytes to 
export iron. Hepcidin is not only regulated by serum iron levels; ery-
thropoietic drive and the innate immune system are other impor-
tant factors (101). The gene encoding hepcidin is transcriptionally 
regulated by IL-6; thus inflammatory stimuli lead to hypoferremia 
(102) and reduced iron availability for pathogens. Unfortunately, 
this contributes to iron sequestration in chronic inflammatory con-
ditions and the anemia of chronic disease (40). The complex inter-
play between iron homeostasis, hypoxia, and inflammation makes 
it challenging to establish causation, so we sought to study pro-
foundly iron-deficient but otherwise healthy individuals to provide 
mechanistic clarity. The iron deficiency seen in our participants was 
naturally occurring absolute iron deficiency — due to factors such as 
blood donation, diet, and menstrual blood loss — confirmed by the 
profoundly suppressed hepcidin level in the ID group.
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for controls. Volunteers attended a screening visit conducted by a 
physician including medical history, examination, spirometry (Micro-
Lab, CareFusion, UK), transthoracic echocardiography (Vivid-q, GE 
Healthcare), venous blood sampling, and a brief hypoxic exposure, to 
establish eligibility and familiarize participants with the study proce-
dures. Before data analysis, ID and IR participants were matched in 
pairs according to sex and age, since both may affect pulmonary vas-
cular physiology (83, 121–123).

Exposure to hypoxia. Each study day entailed a 6-hour eucapnic 
hypoxic exposure (oxygen end-tidal partial pressure 55 mmHg) in a 
normobaric chamber. The apparatus (124) included a computerized 
system for continuously monitoring end-tidal gases via a nasal can-
nula. Continuous electrocardiography and pulse oximetry were per-
formed, and ventilation monitored by computerized analysis of gas 
entrained from the nasal cannula. Nitrogen, CO2, and oxygen were 
introduced via a rapid fan-mixing system, and CO2 removed by pass-
ing of ambient gas through a soda-lime filtration system, permitting 
inspired gas concentrations to be controlled tightly. Participants were 
provided with light refreshment ad libitum, and were able to move 
around, enjoy audiovisual entertainment, and leave the chamber 
briefly to use the lavatory if required.

Blood sampling and infusions. On the first study day, immediately 
before commencement of the hypoxic exposure, 0.9% saline was 
administered i.v., and on the second, 15 mg/kg (maximum 1 g) ferric 
carboxymaltose (Ferinject, Vifor Pharma) was added to an appropriate 
volume of 0.9% saline; each infusion was of 250 ml total volume and 
given over 15 minutes at a rate of 16.7 ml/min. Infusion of 0.9% saline 
in healthy individuals at rates and volumes very considerably in excess 
of this does not produce significant effects on echocardiographic 
measurements of pulmonary or systemic circulatory hemodynamics 
(125). Though it was not possible to randomize the order of infusions, 
participants were blindfolded during administration and not told that 
the infusions would follow a consistent order. Venous blood was sam-
pled before each infusion and at 6 hours. Routine assays were per-
formed by a university hospital laboratory. Serum and plasma were 
obtained by centrifugation and frozen at –80°C. Erythropoietin, sTfR, 
IL-6 (all Quantikine, R&D Systems), and hepcidin (Hepcidin-25 EIA 
kit, Bachem, Peninsula Laboratories) were measured in triplicate by 
ELISA in accordance with the manufacturer’s instructions.

Doppler echocardiography. Throughout each hypoxic exposure, 
PASP and CO were measured echocardiographically (81–89). Par-
ticipants rested comfortably on a customized couch in the left lat-
eral position facing the operator while the maximum systolic pres-
sure across the tricuspid valve (ΔPmax) was determined from an 
apical 4-chamber view of the heart using continuous wave Doppler. 
Stroke volume (SV) was measured from the velocity-time integral of 
left ventricular outflow tract (LVOT) blood flow using pulsed-wave 
Doppler in an apical 5-chamber view, the LVOT diameter having 
been determined from a parasternal long-axis view. CO was deter-
mined by multiplication of SV and heart rate. PASP was calculated 
by addition of 5 mmHg, as an estimate of right atrial pressure, to 
ΔPmax (44, 45, 62, 75).

Statistics. The prespecified primary outcome measure was rise in 
PASP over the initial 6-hour hypoxic exposure in ID compared with 
IR participants. The study was designed to have 80% power to detect 
a difference in the rise in PASP between groups of 4 mmHg with a 
2-sided significance level of 0.05. Data were analyzed using SPSS (ver-

In the present study, no differences were seen in ventilation 
between the groups, nor was a discernible acute effect of i.v. iron 
supplementation on ventilation evident. These findings mirror 
those of a previous study in which acute iron chelation did not 
affect ventilation (61). As with the kidney, the apparent insensitiv-
ity of the carotid body to chronic differences in iron bioavailabil-
ity and acute iron loading may be explained by different relative 
contributions from the multiple HIF paralogs (2, 22) or perhaps 
differences in iron transport mechanisms compared with the pul-
monary vasculature.

In conclusion, our study provides the first evidence, to our 
knowledge, of a clinically meaningful effect of iron deficiency on 
pulmonary vascular biology. It implies that iron status modulates 
the HIF pathway in vivo in a significant way, and it confirms the 
potential of manipulation of iron homeostasis as a tool to treat dis-
eases in which hypoxia plays a role. This is particularly the case 
for conditions in which pulmonary arterial hypertension is a fea-
ture, including both congestive cardiac failure (118) and chronic 
lung disease (119), but is by no means limited to such conditions; 
hypoxia-sensitive pathways are also central to angiogenesis, neo-
plasia, and human reproduction. Given the extensive operation of 
HIF hydroxylase pathways in human biology, and the abundance 
and pleiotropic actions of other iron- and 2-oxoglutatrate–depen-
dent dioxygenases, our findings raise the possibility that altera-
tions in oxygen sensing and signaling could underlie deleterious 
effects of iron deficiency in a wide range of situations.

Methods
This was a prospective, nonrandomized controlled clinical study with 
participants blinded to intervention order. We recruited otherwise 
healthy adults with absolute iron deficiency. Iron-replete age-matched 
(to within a decade) and sex-matched volunteers served as controls. 
Participants were studied on 2 occasions, a week or more apart, during 
a sustained hypoxic exposure.

Eligibility criteria. Inclusion criteria were: ability to give informed 
consent; aged at least 18 years; and presence of detectable TR on 
transthoracic Doppler echocardiography enabling measurement of 
PASP. For recruitment to the ID group, both a serum ferritin ≤ 15 μg/l 
and a transferrin saturation less than 16% were required. For IR vol-
unteers, these values were ≥ 20 μg/l and ≥ 20%, respectively. These 
values were not intended to reflect a universally accepted definition 
of iron deficiency, since there is none (39); their primary function 
was to generate 2 groups differing significantly in iron status. Exclu-
sion criteria were: hemoglobin less than 80 g/l; hemoglobinopathy; 
serum ferritin greater than 300 μg/l; SpO2 less than 94%; iron sup-
plementation or blood transfusion within 6 weeks; pregnancy or 
breastfeeding; and any significant comorbidity potentially affecting 
hematinics, pulmonary vascular responses to hypoxia, or ventilation 
(including inflammatory conditions and those causing intermittent 
hypoxia, such as obstructive sleep apnea). Volunteers were also 
excluded if recently exposed to altitude greater than 2,500 m or air 
travel longer than 4 hours.

Participant recruitment and matching. During the period of 
recruitment between February 2013 and April 2014, blood donors in 
Oxfordshire, UK, were offered information about the study if below 
the hemoglobin threshold to donate, since such individuals frequently 
have iron deficiency (120). Advertisements were placed concurrently 
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