Supplemental Methods

Drosophila experiments

Flies were reared on cornmeal-molasses-yeast agar at 25 °C, 70% humidity, on a 12:12-h light/dark cycle. *ppk-Gal4, Egfr* mutants (*Egfr*^{f24}, *Egfr*^{tsla}), and the UAS-*Egfr* rescue line were obtained from the Bloomington Drosophila Stock Centre (BDSC; Bloomington, IL). *Neuronal Synaptobrevin-GAL4* (*nSyb-Gal4*) was obtained from Julie Simpson (Janelia Farm Research Campus, VA). Wildtype *w*¹¹¹⁸ and *Egfr* short hairpin RNA-interference (RNAi) (transformant ID 107130) flies were obtained from the VDRC (Vienna, Austria).

To assess nociceptive behavior, third instar larvae were transferred to a 100 mm petri dish containing a thin film of distilled water and allowed a 10-min rest period. After this time, they were touched on abdominal segments A4-A6 with a heat probe consisting of a sharpened soldering iron with the tip heated to 46 °C. The response time was recorded as the time elapsed between application of the heat probe and the elicitation of the characteristic nociceptive withdrawal response, a 360° rolling motion about the lateral axis. Supplemental Figures.

Supplemental Figure 1. The EGFR inhibitor AG 1478, but not the Trk blocker, K252a, prevents EREG-induced hypersensitivity on the formalin test. Conversely, K252a, but not AG 1478, blocks NGF-induced hypersensitivity. Agonist x antagonist interaction: $F_{4,59}$ =5.4, p=0.001. Bars represent mean±SEM percentage of samples featuring licking/biting behavior; n=6–8/drug/dose.

Supplemental Figure 2. Egfr knockdown alters nociceptive responses to noxious thermal stimuli in *Drosophila*. While homozygous *Egfr* mutations are lethal, heterozygous and trans-heterozygous mutants displayed a strong analgesic phenotype in response to a 46 °C probe (Kruskal-Wallis statistic = 62.6, p<0.0001) (A–C). Using panneuronal RNAi knockdown (*nSyb*-Gal4), EGFR was found to be acting in the nervous system (Kruskal-Wallis statistic = 42.0, p<0.0001) (D, E, G), and a requirement for EGFR was further traced down to class IV sensory neurons using *ppk*-Gal4 (Kruskal-Wallis statistic = 92.2, p<0.0001) (E, F, H).

Supplemental Figure 3. A) QQ plot of TMD cases vs. supercontrols in OPPERA Caucasians. The SNPs from *EGFR* and *EREG* are labeled in red and green, respectively. **B)** Association of *EGFR* haplotypes with TMD. Forest plots depicting odds ratios (OR; with 95% confidence intervals) in three human chronic pain cohorts for individual *EGFR* 5' endohaplotypes (left) and 3' endohaplotypes (right) versus all others. The 5' haplotypes consist of SNPs rs759171 and rs4947963; the 3' haplotype consist of SNPs rs845552, rs2740762, rs1140475. Complete information on haplotype association results is presented in **Supplementary Table 5**; haplotypes with the strongest contribution are presented here.

Supplementary Figure 4. (A and D) In the superficial dorsal horn of the spinal cord, EGFR-IR (green) was weakly expressed and observed as small dots. The staining for neurons labeled with NeuN (red) is shown in B and E. EGFR did not colocalize with neurons labeled with NeuN (C and F) suggesting that the source of EGFR in the spinal cord is non-neuronal.

Supplemental Figure 5. Inhibition of the ERK pathway produces analgesia, but does not block EREG hypersensitivity. (A) PD98059 (1 μ g, i.t.), a MEK1/2 inhibitor, produces analgesia but does not block EREG induced hypersensitivity on the late phase of the formalin test (main effect of EREG: $F_{1,22}=31.6$, p<0.001; main effect of PD 98056: $F_{1,22}=11.6$, p=0.002). Bars represent mean \pm SEM percentage of samples featuring licking/biting behavior. (B) PD98059 does not block EREG induced hypersensitivity on the von Frey test, but is slightly analgesic ($F_{3,18}=31.8$, p<0.001). Bars represent mean \pm SEM area under the curve over the 60-min testing period for von Frey mechanical testing (at 0, 15, 30 and 60 min post-injection). Sample sizes are provided on graphs. *p<0.05, **p<0.01 increase compared to vehicle group. ${}^{\circ}p<0.05$, ${}^{\circ\circ\circ}p<0.001$ decrease compared to vehicle group.

Supplementary Figure 6. MMP-9 inhibition blocks EREG hypersensitivity, and *Mmp9* null mutant mice are less sensitive to the analgesic properties of gefitinib on the formalin test. (A) Pretreatment with TIMP-1 (4 pmol, i.t.), an endogenous inhibitor of MMP-9 prevents EREG-induced mechanical allodynia on the von Frey test (TIMP-1 x EREG x repeated measures interaction: $F_{6,162}=2.6$, p=0.02) without affecting mechanical sensitivity *per se*. Symbols represent mean \pm SEM withdrawal threshold (g). (B) EGFR antagonist gefitinib produces dose-dependent analgesia in wildtype ($Mmp9^{+/+}$) but not Mmp9 null mutant ($Mmp9^{-/-}$) mice (genotype x dose: $F_{3,48}=3.2$, p=0.03). Bars represent mean \pm SEM percentage of samples featuring licking/biting behavior. Sample sizes are presented on graphs. *p<0.05, **p<0.01, ***p<0.001 compared with vehicle group using posthoc test for repeated measures (A) or Dunnett's case-comparison posthoc test (B).

Supplementary Figure 7. EREG stimulates MMP-9 mRNA translation in an mTOR-dependent manner. (A) Polysome profiling of DRG lysates treated with vehicle, EREG (10 ng, i.t.) or EREG+rapamycin. Rapamycin (10mg/kg) was injected 20 min before EREG, and the lumbar DRG and spinal cord tissue were harvested 40 min after EREG injection. (B) Distribution of Mmp9 mRNAs across sucrose gradient fractions prepared from DRG lysates (n=3, technical replicates). Fractions 5-14 are polysome fractions. (C) The relative amount of Mmp9 mRNA in the light (5-9) and heavy (10-14) polysome fractions is quantified (*p<0.05 compared to analogous control condition). Mmp9 mRNA co-sediments with heavier polysome fractions in EREG-treated DRG lysates, indicating increased rates of translation, and this effect is blocked by rapamycin.

Supplemental Tables.

Supplemental Table 1. Half-maximal analgesic doses ($AD_{50}s$) and 95% confidence intervals (95% CI) for EGFR inhibitor reversal of pain behavior on the late-phase of the formalin test. Morphine is presented for comparison purposes.

Drug	AD ₅₀ (mg/kg)	95% CI (mg/kg)	
AG 1478	5.1	2.3-12.1	
Gefitinib	14.1	8.3-24.2	
Lapatinib	61	29.6-125	
Morphine	4.0	1.9-8.5	
-			

Supplemental Table 2. Half-maximal analgesic doses (AD₅₀s) and 95% confidence intervals (95% CI) for EGFR inhibitor reversal of mechanical hypersensitivity after CFA (day 3 post-injection) and SNI (day 7 post-surgery). Doses are reported in mg/kg.

	C	FA	9	SNI
Drug	AD ₅₀	95% CI	AD ₅₀	95% CI
AG 1478	24	14-43	77	47-129
Gefitinib	37	18-78	195	40-1000
Lapatinib	55	34-88	111	57-217

	OP	-All	ОР	-SC	TN	pre-OP		
	cases	controls	cases	S-controls	cases	controls	cohort	
N	166	1442	129	231	200	198	186	
Female	83.1%	56.0%	100%	100%	100%	100%	100%	
White	78.3%	52.6%	100%	100%	100%	100%	100%	
Black	12.7%	29.7%						
Other/Refused	9.0%	17.7%						
Age (Mean,								
SD)	29.0 (8.0)	27.0 (7.7)	28.5 (8.0)	25.6 (6.7)	36.8 (12.2)	29.9 (11.0)	22.8 (4.7)	

Supplemental Table 3. Demographic characteristics of four human pain cohorts.

Abbreviations: OP-All: OPPERA study, all subjects; OP-SC: OPPERA study, "supercontrols"; TMD: TMD case-control cohort; pre-OP: pre-OPPERA cohort. See **Online Methods** section for details.

Index	Pathway	p-value
182	EGFR -> AP-1/ATF2 signaling	0.0013
188	EGFR/ERBB2 -> TP53 signaling	0.0042
175	GFR -> AP-1/CREB/CREBBP/ELK-SRF/MYC signaling	0.0052
179	EGFR -> CTNND signaling	0.0074
187	EGFR -> ZNF259 signaling	0.0074
183	EGFR/ERBB2 -> CTNNB signaling	0.0094
18	Adherens Junction Regulat on	0.0100
216	TGFBR -> AP-1 signaling	0.0103
82	ThrombinR -> AP-1/CREB/ELK-SRF/SP1 signaling	0.0110
109	VasopressinR1 -> CREB/ELK-SRF/AP-1/EGR signaling	0.0110
17	Focal Adhesion Regulation	0.0129
103	AdenosineR -> AP-1 signaling	0.0136
145	FibronectinR -> AP-1/ELK-SRF/SREBF signaling	0.0142
95	DopamineR2 -> AP-1/CREB/ELK-SRF signaling	0.0173
116	NeurotensinR -> ELK-SRF/AP-1/EGR signaling	0.0190
180	EGFR -> SMAD1 signaling	0.0197
185	EGFR/ERBB2 -> HIF1A signaling	0.0226
136	VasopressinR2 -> CREB/ELK-SRF/AP-1/EGR signaling	0.0234
10	Gonadotrope Cell Activat on	0.0259
128	EndothelineRa -> AP-1/CREB signaling	0.0335
151	ICAM1 -> AP-1/CREB/ELK-SRF signaling	0.0335
218	TGFBR -> ATF/GADD/MAX/TP53 signaling	0.0378
220	TGFBR -> MEF/MYOD/MYOG signaling	0.0378
177	GFR -> FOXO3A signaling	0.0401
178	GFR -> NCOR2 signaling	0.0402
245	TLR -> AP-1 signaling	0.0430
225	NGFR -> AP-1/CEBPB/CREB/ELK-SRF/TP53 signaling	0.0431
210	T-cell receptor -> AP-1 signaling	0.0447
238	EctodysplasinR -> AP-1 signaling	0.0447
198	VEGFR -> ATF/CREB/ELK-SRF signaling	0.0453
86	CCR5 -> TP53 signaling	0.0489
156	Notch -> TCF3 signaling	0.0490
191	FGFR-> RUNX2 signaling	0.0492
205	IGF1R -> MEF/MYOD/MYOG signaling	0.0506
235	TNFRSF1A -> AP-1/ATF/TP53 signaling	0.0539
236	TNFR -> AP-1/ATF/TP53 signaling	0.0539
203	IGF1R -> CEBPA/FOXO1A signaling	0.0563

Supplementary Table 4. Top-ranking *p* –values of cellular pathways associated with TMD in discovery cohort OPPERA cases vs. "supercontrols".

					Association Analysis			Logistic Regression								
SNPs	NSNP	NHAP	HAPLOTYPE	HAP_FREQ	F_A	F_U	CHISQ	DF	P_CHISQ	OR	STAT	P_LOG	LOG_OR	SE_LOG_OR	LB_OR	UB_OR
rs759171 rs4947963	2	3	OMNIBUS	NA	NA	NA	6.54	2	0.04	NA	6.92	0.03				
rs759171 rs4947963	2	3	CC	0.35	0.35	0.35	0.01	1	0.92	1.01	0.01	0.93	0.01	0.12	0.80	1.27
rs759171 rs4947963	2	3	AT	0.13	0.16	0.10	5.86	1	0.02	1.71	5.92	0.02	0.54	0.22	1.11	2.63
rs759171 rs4947963	2	3	СТ	0.52	0.49	0.55	3.00	1	0.08	0.77	3.24	0.07	-0.27	0.15	0.57	1.02
rs1140475 rs2740762 rs845552	3	4	OMNIBUS	NA	NA	NA	2.47	3	0.48	NA	2.18	0.54				
rs1140475 rs2740762 rs845552	3	4	TAG	0.13	0.14	0.13	0.57	1	0.45	1.17	0.61	0.44	0.16	0.20	0.79	1.74
rs1140475 rs2740762 rs845552	3	4	CAG	0.03	0.04	0.03	0.43	1	0.51	1.34	0.50	0.48	0.29	0.41	0.59	3.02
rs1140475 rs2740762 rs845552	3	4	CCG	0.32	0.30	0.35	2.06	1	0.15	0.81	1.87	0.17	-0.21	0.15	0.60	1.10
rs1140475 rs2740762 rs845552	3	4	CCA	0.50	0.51	0.49	0.35	1	0.55	1.11	0.50	0.48	0.10	0.15	0.83	1.48
rs759171 rs4947963	2	3	OMNIBUS	NA	NA	NA	6.45	2	0.04	NA	6.37	0.04				
rs759171 rs4947963	2	3	СС	0.33	0.35	0.32	2.08	1	0.15	1.11	1.88	0.17	0.10	0.08	0.96	1.29
rs759171 rs4947963	2	3	AT	0.14	0.14	0.12	2.57	1	0.11	1.18	2.37	0.12	0.17	0.11	0.96	1.46
rs759171 rs4947963	2	3	СТ	0.53	0.51	0.55	6.06	1	0.01	0.84	5.96	0.01	-0.18	0.07	0.73	0.97
rs1140475 rs2740762 rs845552	3	5	OMNIBUS	NA	NA	NA	10.32	4	0.04	NA	11.40	0.02				
rs1140475 rs2740762 rs845552	3	5	TAG	0.11	0.11	0.10	2.12	1	0.15	1.20	2.44	0.12	0.18	0.12	0.95	1.51
rs1140475 rs2740762 rs845552	3	5	CAG	0.04	0.03	0.05	8.26	1	0.00	0.54	9.54	0.00	-0.62	0.20	0.37	0.80
rs1140475 rs2740762 rs845552	3	5	CCG	0.34	0.34	0.33	0.41	1	0.52	1.06	0.56	0.46	0.06	0.08	0.91	1.23
rs1140475 rs2740762 rs845552	3	5	CAA	0.02	0.01	0.02	0.20	1	0.65	0.81	0.38	0.54	-0.21	0.35	0.41	1.60
rs1140475 rs2740762 rs845552	3	5	CCA	0.49	0.50	0.50	0.07	1	0.79	0.98	0.10	0.76	-0.02	0.07	0.85	1.13
rs759171 rs4947963	2	3	OMNIBUS	NA	NA	NA	1.05	2	0.59	NA	1.60	0.45				
rs759171 rs4947963	2	3	CC	0.34	0.40	0.36	0.92	1	0.34	1.22	1.48	0.22	0.20	0.16	0.89	1.68
rs759171 rs4947963	2	3	AT	0.14	0.12	0.14	0.40	1	0.53	0.83	0.55	0.46	-0.19	0.25	0.51	1.36
rs759171 rs4947963	2	3	СТ	0.51	0.48	0.50	0.25	1	0.62	0.89	0.52	0.47	-0.12	0.16	0.65	1.22
rs1140475 rs2740762 rs845552	3	5	OMNIBUS	NA	NA	NA	6.86	4	0.14	NA	13.00	0.01				
rs1140475 rs2740762 rs845552	3	5	TAG	0.11	0.15	0.09	5.80	1	0.02	2.22	9.00	0.00	0.80	0.27	1.32	3.74
rs1140475 rs2740762 rs845552	3	5	CAG	0.03	0.03	0.02	0.22	1	0.64	1.82	1.09	0.30	0.60	0.57	0.59	5.60
rs1140475 rs2740762 rs845552	3	5	CCG	0.34	0.36	0.37	0.13	1	0.72	0.95	0.08	0.78	-0.05	0.18	0.67	1.34
rs1140475 rs2740762 rs845552	3	5	CAA	0.02	0.02	0.01	0.31	1	0.58	1.86	0.62	0.43	0.62	0.79	0.40	8.70
rs1140475 rs2740762 rs845552	3	5	CCA	0.49	0.44	0.50	2.15	1	0.14	0.66	5.70	0.02	-0.42	0.17	0.47	0.93

Supplementary Table 5. Green cases = TMD Case-Control Cohort (200 cases, 198 controls), black cases = OPPERA Caucasians, Cases vs. Controls (127 cases, 731 controls), red cases = OPPERA Caucasians, Cases vs. Supercontrols (127 cases, 231 supercontrols. Association analysis for black and red cases did not control for other covariates and logistic regression controlled for sex and site. Abbreviations: HAP_FREQ=overall frequency of haplotype (F from logistic regression output), F_A=frequency in affected (TMD cases), F_U=frequency in unaffected (TMD controls/supercontrols).