Cellular basis for the normal T wave and the electrocardiographic manifestations of the long-QT syndrome

GX Yan, C Antzelevitch - Circulation, 1998 - Am Heart Assoc
Circulation, 1998Am Heart Assoc
Background—This study probes the cellular basis for the T wave under baseline and long-
QT (LQT) conditions using an arterially perfused canine left ventricular (LV) wedge
preparation, which permits direct temporal correlation of cellular transmembrane and ECG
events. Methods and Results—Floating microelectrodes were used to record
transmembrane action potentials (APs) simultaneously from epicardial, M-region, and
endocardial sites or subendocardial Purkinje fibers. A transmural ECG was recorded …
Background—This study probes the cellular basis for the T wave under baseline and long-QT (LQT) conditions using an arterially perfused canine left ventricular (LV) wedge preparation, which permits direct temporal correlation of cellular transmembrane and ECG events.
Methods and Results—Floating microelectrodes were used to record transmembrane action potentials (APs) simultaneously from epicardial, M-region, and endocardial sites or subendocardial Purkinje fibers. A transmural ECG was recorded concurrently. Under baseline and LQT conditions, repolarization of the epicardial action potential, the earliest to repolarize, coincided with the peak of the T wave; repolarization of the M cells, the last to repolarize, coincided with the end of the T wave. Thus, the action potential duration (APD) of the longest M cells determine the QT interval and the Tpeak–Tend interval serves as an index of transmural dispersion of repolarization. Repolarization of Purkinje fibers outlasted that of the M cell but failed to register on the ECG. The morphology of the T wave appeared to be due to currents flowing down voltage gradients on either side of the M region during phase 2 and phase 3 of the ventricular action potential. The interplay between these opposing forces determined the height of the T wave as well as the degree to which the ascending or descending limb of the T wave was interrupted, giving rise to bifurcated T waves and “apparent T-U complexes” under LQT conditions. Spontaneous and stimulation-induced polymorphic ventricular tachycardia with characteristics of torsade de pointes (TdP) developed in the presence of dl-sotalol.
Conclusions—Our results provide the first direct evidence that opposing voltage gradients between epicardium and the M region and endocardium and the M region contribute prominently to the inscription of the ECG T wave under normal conditions and to the widened or bifurcated T wave and long-QT interval observed under LQT conditions. Our data suggest that the “pathophysiological U” wave observed in acquired or congenital LQTS is more likely to be a second component of an interrupted T wave, and argue for use of the term T2 in place of U to describe this event.
Am Heart Assoc