[PDF][PDF] Signals from intra-abdominal fat modulate insulin and leptin sensitivity through different mechanisms: neuronal involvement in food-intake regulation

T Yamada, H Katagiri, Y Ishigaki, T Ogihara, J Imai… - Cell metabolism, 2006 - cell.com
T Yamada, H Katagiri, Y Ishigaki, T Ogihara, J Imai, K Uno, Y Hasegawa, J Gao, H Ishihara…
Cell metabolism, 2006cell.com
Intra-abdominal fat accumulation is involved in development of the metabolic syndrome,
which is associated with insulin and leptin resistance. We show here that ectopic expression
of very low levels of uncoupling protein 1 (UCP1) in epididymal fat (Epi) reverses both
insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and
decreased food intake in both diet-induced and genetically obese mouse models. In
contrast, UCP1 expression in Epi of leptin-receptor mutant mice did not alter food intake …
Summary
Intra-abdominal fat accumulation is involved in development of the metabolic syndrome, which is associated with insulin and leptin resistance. We show here that ectopic expression of very low levels of uncoupling protein 1 (UCP1) in epididymal fat (Epi) reverses both insulin and leptin resistance. UCP1 expression in Epi improved glucose tolerance and decreased food intake in both diet-induced and genetically obese mouse models. In contrast, UCP1 expression in Epi of leptin-receptor mutant mice did not alter food intake, though it significantly decreased blood glucose and insulin levels. Thus, hypophagia induction requires a leptin signal, while the improved insulin sensitivity appears to be leptin independent. In wild-type mice, local-nerve dissection in the epididymis or pharmacological afferent blockade blunted the decrease in food intake, suggesting that afferent-nerve signals from intra-abdominal fat tissue regulate food intake by modulating hypothalamic leptin sensitivity. These novel signals are potential therapeutic targets for the metabolic syndrome.
cell.com